Flexural Properties and Fracture Behavior of Nanoporous Alumina film by Three-Point Bending Test
نویسندگان
چکیده
This study investigated the influence of porosity on the flexural property of a nanoporous alumina film. When the porosity of the alumina film increased, both bending strength and modulus declined. The results from the bending test revealed that the setting of the film during the bending test had significant influence on the flexural property. Fracture only occurred when the porous side of the alumina film suffered tensile stress. The ability to resist fracture in the barrier layer was higher than in the porous side; the magnitude of the bending strength was amplified when the barrier layer sustained tensile stress. When the porous layer suffered a tensile stress, the bending strength decreased from 182.4 MPa to 47.7 Mpa as the porosity increased from 22.7% to 51.7%; meanwhile, the modulus reduced from 82.7 GPa to 17.9 GPa. In this study, the most important finding from fractographic analysis suggested that there were a localized plastic deformations and layered ruptures at the porous side of the alumina film when a load was applied. The fracture behavior of the nanoporous alumina film observed in the present work was notably different from general ceramic materials and might be related to its asymmetric nanostructure.
منابع مشابه
Flexural Behavior of Fiber–Metal Laminates Reinforced with Surface-Functionalized Nanoclay
The effects of surface-functionalized Na+-montmorillonite nanoclay particles on the flexural behavior of E-glass fiber-reinforced aluminum (GLARE) laminates were investigated. The nanoclay particles were subjected to surface functionalization using 3-(trimethoxysilyl)propylamine to increase their compatibility with the epoxy matrix and improve their dispersion within the matrix. Expe...
متن کاملFlexural strength of the joint between glass-infiltrated alumina frames and the alumina-magnesia modifier.
PURPOSE The purpose of the present study was to evaluate the flexural strength of the joint between glass-infiltrated alumina frames and the experimental adjusting agent (MA modifier) that contains alumina and magnesia. METHODS A commercially available adjusting agent (Optimizer), a slurry of alumina powder (Alumina modifier), and a bulk specimen (joint-free alumina) were used as controls. Be...
متن کاملThe influence of cellulose pulp and cellulose microfibers on the flexural performance of green-engineered cementitious composites
The aim of this study was to investigate the flexural behavior of engineered cementitious composites (ECCs) reinforced by cellulose pulp (CP) and cellulose microfibers (CMF). The reinforcements were obtained from chemical-mechanical treatments of Kraft paper and used in ECC mix design. Results showed that cement reinforced by CP exhibited a strain-hardening behavior in the three-point bending t...
متن کاملFlexural monitoring of carbon fiber/epoxy composite by acoustic emission
Carbon / epoxy composite is one of the most useful polymer matrix composites that has special properties such as high strength-to-weight ratio, high hardness, high corrosion resistance, Resistance to nuclear radiation has high consumption in different industries such as aerospace industry. Therefor monitoring of loading of this type of composite is important. In order to determine failure mecha...
متن کاملThe effect of magnesium oxide supplementation to aluminum oxide slip on the jointing of aluminum oxide bars.
The purpose of this study was to investigate the effect of modifying aluminum oxide slips with magnesium oxide (MgO) to create a jointing material for In-Ceram Alumina. Jointed In-Ceram Alumina bars with In-Ceram Alumina slips containing 0-1.0 mass% MgO were examined by a three-point bending test. Joint-free bars were also tested as controls. Fracture surfaces were evaluated by scanning electro...
متن کامل